One-dimensional Symmetry for Semilinear Equations with Unbounded Drift

نویسندگان

  • ANNALISA CESARONI
  • MATTEO NOVAGA
  • ANDREA PINAMONTI
چکیده

We consider semilinear equations with unbounded drift in the whole of R and we show that monotone solutions with finite energy are one-dimensional.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry Results for Nonlinear Elliptic Operators with Unbounded Drift

We prove the one-dimensional symmetry of solutions to elliptic equations of the form −div(ea(|∇u|)∇u) = f(u)e, under suitable energy conditions. Our results hold without any restriction on the dimension of the ambient space.

متن کامل

Unboundedness of classical global solutions of parabolic equations with forcing terms

Semilinear parabolic equations with forcing terms are discussed, and sufficient conditions for every classical global solution of boundary value problems to be unbounded on a cylindrical domain in R. The approach used is to reduce the multi-dimensional problems to one-dimensional problems for first-order ordinary differential inequalities.

متن کامل

A Cell Complex Structure for the Space of Heteroclines for a Semilinear Parabolic Equation

It is well known that for many semilinear parabolic equations there is a global attractor which has a cell complex structure with finite dimensional cells. Additionally, many semilinear parabolic equations have equilibria with finite dimensional unstable manifolds. In this article, these results are unified to show that for a specific parabolic equation on an unbounded domain, the space of hete...

متن کامل

Planar Propagating Terraces and the Asymptotic One-dimensional Symmetry of Solutions of Semilinear Parabolic Equations

We consider the equation ut = ∆u + f(u) on RN . Under suitable conditions on f and the initial value u0 = u(·, 0), we show that as t→∞ the solution u(·, t) approaches a planar propagating terrace, or a stacked family of planar traveling fronts. Using this result, we show the asymptotic one-dimensional symmetry of u(·, t) as well as its quasiconvergence in Lloc(R ).

متن کامل

Entire Solutions of Semilinear Elliptic Equations in R and a Conjecture of De Giorgi

This paper is concerned with the study of bounded solutions of semilinear elliptic equations ∆u − F ′(u) = 0 in the whole space R, under the assumption that u is monotone in one direction, say, ∂nu > 0 in R. The goal is to establish the one-dimensional character or symmetry of u, namely, that u only depends on one variable or, equivalently, that the level sets of u are hyperplanes. This type of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012